If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4m^2+16m-16=0
a = 4; b = 16; c = -16;
Δ = b2-4ac
Δ = 162-4·4·(-16)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{2}}{2*4}=\frac{-16-16\sqrt{2}}{8} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{2}}{2*4}=\frac{-16+16\sqrt{2}}{8} $
| 9(s+7)=72 | | 2p^2=5p+6 | | 2x/5+7=3x=2/6 | | 5-3(2x-4)=5 | | 2n-4(-4-3n)=86 | | 3/5i+6=-4/3 | | 5x-2=10x | | y+1=4(1-1) | | (5y+4)=(2y+36)=260 | | -12n-4(-5n+7)=108 | | 4x+5=5x+2 | | 2y-8-4y=4 | | 5w+10=7w | | y-1=2(1+1) | | (5y+4=2y+36) | | -5(h-3)=10h | | 2(b+4)+3b=14 | | 4.8x=-48 | | 5y+4=2y+36 | | x^2*63=16 | | 4x-9^2=0 | | 5x+12=-55-8x | | -12g+18=10g-26 | | 2x+x+5=37 | | 2.6x=-52 | | (190-(13x-7))/2=5x-5 | | 6f-10-4f=3 | | 16a^2+16a-2=4 | | e/5+8=-10 | | 5x-10)=(12x-14) | | -7(u+4)=-4u-1 | | 12-3z=7 |